Code: 20ES1502

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

DATA STRUCTURES AND ALGORITHMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					N (
			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Explain the different operations that can be	L1	CO1	7 M		
		performed on a Doubly Linked List.					
	b)	Explain the Delete Operation in a Singly	L1	CO1	7 M		
		Linked List as compared to a Doubly					
		Linked List with an example.					
	OR						
2	a)	Explain the different operations that can be	L1	CO1	7 M		
		performed on a Singly Circular List.					
	b)	Elucidate the key differences between a	L4	CO1	7 M		
		Singly Linked List and a Singly Circular					
		Linked List through an example.					
UNIT-II							
3	a)	What is a Queue? Give an application of a	L2	CO1	7 M		
		Queue and explain the different operations					
		that can be done on a Queue.					

	b)	Discuss the Linked List based	L3	CO2	7 M	
	ĺ	implementation of Stacks. What advantage				
		does it hold over Array based				
		implementation?				
	L	OR				
4	a)	What are some common applications of	L2	CO1	6 M	
		stacks?				
	b)	Explain the concept of a circular queue and	L2	CO2	8 M	
		how it differs from a linear queue. Discuss				
		its advantages and disadvantages.				
		UNIT-III				
5	a)	Construct a Binary Search Tree for the	L4	CO1	8 M	
		following sequence of numbers in the given				
		order: 55, 72, 22, 64, 90, 11, 40, 106, 65, 43,				
		71 and 29. Consider the first element (64) as				
		the root node.				
	b)	From the resulting BST obtained in 5(a),	L3	CO2	6 M	
		delete the following elements one by one				
		and draw the resulting BST after each				
		deletion. The sequence of elements to be				
		deleted are: 64, 72 and 11 in that order.				
OR						
6	a)	Explain In-Order, Pre-Order and Post-Order	L2	CO3	7 M	
		Traversal in Binary trees with appropriate				
		examples.				
	b)	For the graph given in the figure below,	L3	CO3	7 M	
		apply the BFS traversal algorithm and				
		output the appropriate tree Assume initial				
		node has starting node.				

		3 1 2 5			
		UNIT-IV		<u> </u>	
7	a)	Explain greedy algorithm with an any example.	L4	CO3	6 M
	b)	Apply the Dijkstra's algorithm to find the shortest path from node A to all other nodes, for the following graph.	L3	CO3	8 M
		OR			
8	a)	Write an algorithm for the Quick Sort method and illustrate the algorithm for the sample input: 65, 24, 1, 45, 7, 12, 21, 30, 2	L4	CO4	7 M
	b)	Explain the Divide and conquer technique with a suitable example.	L3	CO4	7 M

	UNIT-V							
9	a)	Explain travelling salesman problem by	L2	CO5	7 M			
		using the dynamic programming approach						
		with an example.						
	b)	Explain 0/1 Knapsack problem using	L2	CO5	7 M			
		dynamic programming approach with an						
		example.						
	OR							
10	a)	Write an algorithm using the dynamic	L4	CO5	9 M			
		programming approach for the All-pairs						
		shortest path problem.						
	b)	Discuss the time complexity of the	L2	CO5	5 M			
		algorithm that you have given in 10(a).						